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• Mechanisms of decay of laminar and turbulent vortices

• By MAHINDER S. UBEROI

University of Colorado, Boulder, Colorado 80309

Dynamics of an Infinitely long one—dimensional vortex and a swirl are corn—

• pared with dynamics of a semi—infinitely long trailing vortex and trailing

swirl. With increasing distance, the change in axial velocity difference between

the core of the trailing—vortex and the surrounding region causes radial

convection and some associated axial convection of angular momentum . In laminar

or turbulent trailing vortices, this is the dominant mechanism for decrease In

velocities of swirl in the core and corresponding growth of the core. Axial

velocity difference between the core of the trailing—vortex and the surrounding

region Is necessary for the sustenance of turbulence in the vortex core. A

theory of turbulent trailing—vortex is developed on the basis of these mechanisms

and the results are compared with experimental observations .
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1. Introduction

There are a variety of theories and v Iews about unconfined and semi—

infinitely or infinitely long turbulent swirls and vortices. These theories

are neither confirmed nor refuted by experimental investigations, since very

few experiments exist where the effects of initial conditions and extraneous

influences have been minimized . We critically examine the assumptions under-

ly ing these theories and show. that many of these are far—fetched . We find

correct physical processes. The results of analysis based on these physical

processes are compared with the most recently available experiments.

There are four distinct types of flows which are relevant here. An infinitely

long LINE SWIRL with a single velocity component u
0

(r ,t) , where r Is the

radial distance From the swir l ax is z , subscript 0 r e fe r s  to the angular

coord i nate , and t ts th e time. Its angu lar momentum pM per u ni t ax ial

d i s t ance is constan t and Independ en t of t i me , where

2M = 2lT f u0(r,t)r dr , 
(1)

and p is the density of the fluid . A prime, as u ’0, will be used to denote

the fluctuating part of a quantity. Otherwise, the symbol represents either a

quantity in a laminar flow or its mean value in a turbulent flow.

The second flow Is an infinitely long LINE VORTEX with one velocity

component u
0

(r ,t) such that u
0 

= r 0/2,~r for large r with zero velocity

at r 0. Its angular momentum per unit distance along the swirl axis is in-

finite and its rate of change of angular momentum is finite depending on vis-

cosity. It is further assumed that 3r2/ar > 0 where r 2irru0.

1
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The third flow is a TRAILING SWIRL with three velocity components u (r z ) ,

u0 (r ,z) ,  and ur (r ,z ) ,  where z is the distance along the axis of the trailing

swirl measured from its origin . It may be produced by rotating vanes with the

axis of rotation parallel to the prevailing uniform steady flow u .  The vanes

may add to or absorb some axial momentum of the prevailing flow. Thus we have

a swirl which may have a coaxial jet or a wake. As r -
~ u0 

= u
r 

= 0,

and u = u . The flux of angular momentum
z 0

2A = 2np f u(r ,z) u0
(r ,z) r dr (2)

is independent of z.

The four th f low is a TRAILING VORTEX produced at the tip of a semi—infinite

lifting wing in the presence of a prevailing mean flow. The trailing vortex

has some similarity to a trailing swirl having three velocity components, with

the important difference that as r -
~~ ~~~, u = 0, u = 1’ /2nr , u = u

r 0 0 Z 0

where r is the total circulation. The flux of angular momentum is infinite,

• but its change

2dA/dz = 2ir p f j—(u u8) r dr (3)

is finite and depends on z . It is further assumed that ar 2/ar > 0.

Initially, in all these flows vorticity is assumed to be confined to a

region of small radius and moments of all orders of any vorticity component

with respect to z—axis exist. The cores of these flows are regions where

most of vorticity is located. This paper is concerned with the growth of these

cores or the spread of initially concentrated vorticity due to viscous and

turbulent processes.

2
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In analyzing the third and fourth flows, it is invariably assumed that U
r

may be neglected , u = u , and z is replaced by tu , thus reducing the

trailing swirl to the line swirl and the trailing vortex to a line vortex. We

indicate below and subsequently show in detail that this approximation is

invalid .

As a trailing swirl or a trailing vortex develops , swirl velocities

u0 
decrease with the downstream distance z. Since the pressure at large r

is constant , near the axis of a swirl or a vortex this leads to 9p/~z > 0

where p is the pressure. This implies divergence of the cores of these

flows and an axial velocity difference between the cores of these flows and

the surrounding regions that have three important effects on the dynamics of

these trailing flows which are absent in a line swirl and a line vortex.

(1) Linear and non—l inear stability analyses (Uberoi et al. 1972; Naraln and

Uberoi 1973) show that a difference of axial velocities between the core and

the surround ings destabilizes swirling flows which otherwise could he s tab le .

(2) There may be sig n i f i c a n t  and sometimes dom inan t radial and associated ax ial.

convection of angular momentum . (3) The range of downstream distances over

which dynamic self—similarity exists may be limited . The importance of these

effects decreases with decreasing rate of spread of these flows. However, in

the study of trailing flows with swirl the emphasis is on their rates of growth

rather than on the final stages where they have practically ceased to grow.

2. Laminar Swirl, Line Vor tex, and Their Stabilities.

It is important to consider the dynamics and stability of the basic

3
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laminar flow , a part of which may become turbulent. In swirling flows the

basic laminar f l ow may enhance, diminish, or even quench turbulence in its

interior. These, sometimes strong, stabilizing or destabilizing effects must

be considered when postulating turbulent stresses in these flows.

The equation of motion for a swirl or a line vortex is

a 2 3 3 3
• ~~

-
~~

- r u~ = v -
~~~~

- r 
~~~

— (u
~
/r), (4)

where v is the kinematic viscosity .

A swirl of finite M diffuses out due to viscosity and shares its

angular momentum with the surrounding fluid which is set into motion . Tts

Reynolds number is (M/tY ~Iv. A known self—similar swirl is

2
M r 2r = 2wru

0 
= 

~~
j- ( ~~

-
~~~~~

- ) exp (—r /4vt ) .  (5)

In a line vortex u 0 r / 2~r for r -- and the rate of change

of angular momentum ,

2 n f ~
0 }_ r 2 u 0dr —2 v1’ . (6)

This rate is independent of the detailed distribution of the vorticity

or u0 in the interior of the vortex . If we assume f in i t e  v then there are

stresses but no net force on a fluid element in the potential flow surrounding

the core where most of the vorticity resides. The angular momentum is lost

from the interior of the vortex through the potential flow region to the region

r -
~ ~ . The core over which most , say 95% , of the total vorticity or r is

distributed grows and so does Its angular momentum . This Is due to Infinite

4
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• angular momentum surround ing any f i n i t e  though growing Interior region. The

Reynolds number is f0/v

A known self—similar solution for the line vortex is

• r = 2i~ru9 
= r [1 — exp(—r

2
/4vt)] (7)

We may combine (5) and (7) to get a vortex—swirl combination

r - r0 [1 + ~ ~~~~~~~~~ ~~~~ 
- 1 1 exp (-r 2 /4vt)J (8)

In a line vortex (7) shows that the circulation increases monotonically

with radius reaching a constant value r . In a swirl total vort ici ty is zero

and r increases and then decreases to zero for large r .  In a line—vortex—swirl

example given by (8) 1’ overshoots I’ , then decreases to I’ for r

This o-’ershoot decreases and becomes relatively insignificant with time and may

be considered as a decaying ‘initial ’ disturbance.

This is a special case of a general, r •sult. if the initial vorticlty Is

axisymmetric and is distributed over a finite area around the origin then

its subsequent distribution can be found using (4). After a long time vorticity

and velocity distributions will appear as if the total VOttiCity were originally

at the origin, any initial vorticity distribution of opposite signs and zero

total value hav ing no significant influence. If , however , the total vorticity

is zero , then the initial distribution of the vorticity determines the sub—

sequent state of the vorticity and the velocity.

We may look at the situation from the point of view of dynamics. The

angular momentum associated with a finite total vorticity is infinite and it

is finite for a distribution of vorticity of opposite signs such that the total

5 
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vorticity or is zero. As time progresses the former will dominate the latter .

We are assuming initially concentrated vorticity near the axis.

These well known results are presented to contrast some properties of

laminar flows with corresponding properties of the flows with the same overall

parameters and in turbulent state. For example, in a laminar line—vortex—

swirl the dynamics of any region of overshoot where r > r become in time

unimportant to the dynamics of the main vortex . l4hile in a turbulent line—

vortex—swiri Govindraju and Saffman (1971) assert that at high Reynolds numbers

the overshoot , F > r , is the main growth mechanism of a turbulent vortex.

The virtual origin of the time t for a line—swirl and line—vortex may

not be the same. This becomes insignificant as t becomes large. However,

for both small and large t we def ine a line—vortex—swirl as a flow which

behaves like a vortex for sufficiently large r and for some finite range of

r, dF
2
/dr < 0. This slight generalization is necessary for the purpose at

hand , which is to study the stability and turbulence in such flows.

An important criterion based on analysis assuming inviscid flow for

stability of swirling flows with one velocity component U
(; 

(r,t) is , (Rayleig h

1916), (Chandrasekhar 1961),

dr
2 

/dr > 0. (9)

A line vortex is stable at all times. A swirl is unstable. A line—

vortex—swirl is unstable and its interior may become turbulent at a sufficiently

high Reynolds number. However, as the time progresses the flow will tend to

stabilize and production of turbulence will diminish towards zero and the

6
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turbulence already created will decay due Lu viscosity. In practice flows

approximating a l ine—vortex are used to stabilize unstable fluid conflgura—

• tions such as vortex stabilized electric arc , (Chow and ll eroi 1972). Experi-

ments lend support to the above criterion (9) without regard to any limitations

of the cited stability theories.

We have conducted a simple experiment to check the stability considera-

tions. Water was injected tangentially all along the inner wall of a transparent

vertical cylindrical vessel of 30 cm diameter , 50 cm long, with a central

• drain in its flat bottom and nearly full of water . After the vortex was set

up the drainage was reduced in steps after each repetition of the experiment

described below. There was no drainage during the last experiment. The fluid

in the center was made turbulent by stirring it randomly or by spinning a 0.6

cm diameter rod spanning the entire length of the cylinder in the direction of

the main vortex or opposing it. I’he turbulent flow was made visible by painting

the stirrer or the rod with water soluble ink. Care was taken to limit the

disturbance to a short time period , so as to confine the Initial disturbance

to a cylindrical region of about 3 cm diameter , which may be considered small

in size compared with the size of the main vortex . The Reynolds number F0/v

of the vortex was about 1O3. In every case the initial turbulence decayed and

was not sustained at the expense of the energy of the relatively slowly changing

main motion of the vortex.

In another experiment at F /v = 7.8 x ~~~ we have made detailed

velocity measurements in a trailing vortex when it approached a line vortex

for a short distance, i.e. u u .  The existing turbulence in the vortex

7
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almost disappeared (Singh and liberoi 1976). This further substantiates our

claim that turbulence cannot be sustained in a line vortex.

3. Turbulent Line—Swirl , Line—Vortex, and Their Combination

A line—swirl is unstable according to the criterion (9) based on the

assumption of an inviscid fluid . At sufficiently high Reynolds numbers it

becomes unstable , which is consistent with experience. We have recently de—

veloped the structure of a turbulent swirl based on plausible assumptions,

(ljberoi, 1977a).

A line—vortex [s stable unless it has a swirl superimposed on it;

• i.e., there is a finite radial region where df’2/dr < 0. Turbulence will

develop in the nature of an initial disturbance and decay at a faster rate

than the asymptotic rate of growth of the vortex core. Ho~iever , there are

several theories of sustained turbulence in a line—vortex. They assume that

there exists three—dimensional turbulence. However , there is only one mean

velocity component u
0 

(r ,t). The equation governing a turbulent line—swirl ,

l ine—vortex , or their combination Is

~ 2 ~
) 2 ~.) fl

• ~ -~- (r u
0) 

= r (_ u
r ul

() + yr 
~
j— —) (10)

where — pu ‘u ‘ is the turbulent stress.r O

We note that the equation (6) for the rate of change of angular momentum

of a turbulent line—vortex or line—vortex—swirl is the same as for the laminar

case. Since any turbulence is confined to the vortex core, it does not affect

the ultimate transfer of angular momentum through the potential flow surrounding

the vortex core.
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SquI re ( 1965) was the f i r s t  to consider a vortex w i t h  a turbulent

co re. In e f f e c t , he assumed that  “ tu rbulent ” kinematic viscosity,

= zF (11)
t 0

where a is a constant. The solution is given by (7) with V replaced by

ar . Since the turbulence is confined to a finite radius, V should vanish
0 t

as r -
~~ ~~~. Squire ’s assumption allows far too much angular momentum to

escape to infinity which is determined by (6).

We may try to save Squire ’s solution by stipulating that it is only

valid for a vortex in the presence of uniform atmospheric turbulence where a

constant may be used. However, there are serious difficulties with this

artifice. A constant turbulent kinematic viscosity due to atmospheric turbo

lence has nothing to do with r which is associated with the vortex. Let

the atmospheric turbulence be strong enough to interact with the vortex . In

the potential part of the vortex , due to spat la.11.y vary ing rate of stra in ,

the interaction would vary spatially and with time . Consequentl y v~ cannot

be assumed constant . Further , we cannot assume that the entire vortex inter-

acts significantly with the atmospheric turbulence, and the outer flow is still

potential with u
0 

= F /2rtr for all time.

Hoffman and Joubert (1963) considered radial transfer of angular momentum

in the turbulent core of a line—vortex. Using certain assumptions they concluded

that the circulation varies logarithmically with radial distance in the region

of maximum u0 . They failed to show how the momentum is transferred to large

radial distances; this transfer is determined by viscosity and is given by (6).

9
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The total rate of change of angular momentum is due to viscosity and

cannot exceed that given by (6). If we insist on the growth of the core ,

i.e., decrease of its swirl velocities faster than that caused by viscosity,

then the outer flow must speed up, since the total angular momentum must be

conserved except for a small loss due to viscosity. It follows that the

ci rculation in the region of potential flow where the flow speed s up must

exceed or over—shoot F . Va r ious elaborate theor ies have been developed to

“prove ” the existence of a circulation over—shoot. In fac t , the over—shoot

is a direct consequence of the insistence mentioned above , which m.ly take

many d i f f e r e n t  forms .

• Govindaraju and Saffman (1971) assume that r
2 
u ’ u

0
’ and ru L) arc

functions of r/t~ and (4) becomes a total differential equation . The insistence

is contained in this functional dependence; i.e., the maximum value of u0

must decrease and the core size must increase faster than would be caused by

viscosity.

Macagno and Macagno (1975) assume that if c is the mean rate of strain

then the turbulent kinematic viscosity

v
~~~

= a +  (12)

where a and ~ may vary with space and time but are taken to be constant in

their analysis. The quantity a here is not related to that in (11). The

above is supposed to include vortex generated and atmospheric turbulence. In

accordance with the above discussion of Squire ’s work a must equa l V

The equation (12) allows turbulent stresses and hence production of turbulence

in the outer potential flow where c is finite.

10 
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• Theories discussed here and other such theories were based on the

unjus t i f iable  belief that a line—vortex is equivalent to a trailing vortex

where t is replaced by z/u . The results of the analyses were compared

with experimental observation of trailing vortices.

Measured data on trailing vortices have been fitted to Squire ’s solution

for a line—vortex , although the value of the constant a varies from case

to case (Rose and Dee 1963; McCormick et al 1968). Owen (1970) has given an

• explanation for the variations of a with F / V . This does not remove

the fundamental objections raised above.

4. Laminar Trailing Swirl, Trailing Vortex , and Their Instabilities

The equation governing u
9 in these flows is

(u + u )  u
0
r
2 

+ f (uu
8
r
2) = V f r 3 f- (—.

~
-) , (13)

where u0 is the constant prevailing velocity along the swirl axis. In the

core of these flows the swirl velocity u
0 decreases with downstream distance

z and therefore > 0. The flow in the core diverges, causing significant

radial and some associated axial convection of angular momentum . We illustrate

this by examining the total rate of change of angular momentum in a trailing

vortex. Integrating (13), we have

2 3 22ru 0f ~~
— u0 r dr = —2it j— (u~

u
0
)r dr — [u rr] r + . F

0 
— 2vF 0

convection di f fus ion

(14)

11
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Batchelor (1964) has calculated axial flow in a trailing vortex , neglecting

radial flow. He assumes that all velocities are small compared with u0 , 
so

that (13) becomes

3 2 3 3 3  
U
0

u 
~~~

- u
~
r = v 

~~

— r 
~~~~~ 

(•
~

:•—) , (15)

which replaces a trailing vortex with a line—vortex. The velocity u0 is

• given by (7) with t replaced by z/u0 . Using this u
0 

pressure is cal-

culated from the approximate equation

p u 0
2 / r = -  . 

- 

(16)

Axial velocity u z is calculated using this pressure and the equation

2

p u  ~ — u  = —~~~~~ + pv ( -a-—- ÷ ! ~— ) u . (17)
o3z z ~lz 3r2 r 3r z

The resul t  is
2 2 2

F zu F Lu
u = — ° in _ ._2~ exp (—c ) + 

0 
~~ 

— ° exp(—F~) ,
z 2 V 2 2 8vz32ii yr  3211 z

(18)

where

~ — u  r2 
/ 4vz (19)

The function Q
2 

and the constant L are not of interest here. We have

calculated the radial and associated axial convection as

3 2
I’ .(u r) = —2 f — u Fr dr = r /16w zu (20)o r r - ~~~ o 3z z o o

12
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• The impor tance of the neglected convection of angular momentum can be

expressed as the ratio

convect ion/d i f fus ion  = ~~ }— u Frdr + F .(u r) /2vF (21)

= = (l’ /v)  (1’ /64rzu )

= (F /v) (c/400z)

• where we have assumed that the trailing vortex is generated by a semi—infinite

wing of chord c and F = cu /2 . Since the vortex is essentially a high

• Reynolds number phenomenon F /v >> 1 and z/c must be large to make this

ratio much smaller than unity. In general radial and associated axial con-

vection of angular momentum cannot be neglected .

Moore and Saffrnan (1973) have calculated axial. velocity in t h e core

of a vo rtex for which at z = o, u0 
= ~r

11 where (~ Es a constant and

O < n < 1. They also neglected rad ial and associated axial convection of

angular momentum . Using their axial velocity,  we f i nd tha t the requirement for

these neglects is that

2 2 vz n
~ / u ( — )  < < 1  (22)

0 U
0

They were concerned with axial velocity during vortex sheet roll up near the

wing or small z where the flow is essentially three—dimensional and u can

not be neglected . The condition (22) may be satisfied at large Z , but then

vortex is rolled up and corresponds to Batchelor ’s case.

The present discussion shows that for those distances of interest from

the origin where the vortex is significantly changing the dominant mechanism

13 

• ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~ 4



F T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

for  a decrease in the swirl velocities in the core of a laminar trailing

vortex is radia l and associa ted axial convection of angular momentum .

Another important effect of axial flow or difference in u between
• z

the core and the surroundings is that a flow becomes unstable which was

otherwise stable according to criterion (9) , (Uberol et al. 1972) .

A trailing vortex is further destabilized when a trailing—swirl is

added to it such that ther e is a f in i te  radial distance r for which
2

dr /dr < 0 , in the same manner as for a line—vortex .

5. Turbulen t Trailing Vortex

On dimensional ground s we may write the functional dependence of the

circulation F ( — 2irru
0) as

F/ F = y (ru /F , zu/ F ;r /v) . (23)

All “ f ree ” tu rbulent f lows , i .e . ,  w i thout constraining rig id boundaries , are

independent of Reynolds number . There has been some speculation (McCormick

et al. 1968) that the structure of a turbulent trailing vortex may depend on

its Reynolds number F / v

The equation governing u 0 using slender vortex core approximation

is

3 2 3 2 3 
U
0— ( u  + u ) u r = — r  (—u u —u u + y r — — )  . (24)o z 8 3r r O  r 0 3r r

In teg r a t ing t h is equat ion we hav e

14
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u f
W._~rrdr = — f °°

~— u Frdr — (u r) F — 2vF (25)
0 0 3z a 3z z r r ~ a o

= — f ’~— u (F—F ) rdr — 2v1’ (26)
o 3z z o o

convection diffusion

where we have assumed that turbulence in the trailing vortex vanishes as

r ~ ~ and we have made use of the continuity equation in deriving (26). It

is well known that in all flows without constraining boundaries the turbulent

fluid is separated from non—turbulent fluid by a sharp irregular boundary.

Velocity fluctuations decay very rapid ly as we move from turbulent into non—

turbulent fluid , Further , measurements , Singh (1974), Uberoi (1974), in a

trailing vortex show that both r(u
0
’2)~ and r(u~~

2
)i vanish as r

Hence r
2 
u ’ u’ -~ o as r -

~ ~ . We are concerned here with the spread of
r O

turbulence which is initially concentrated near the axis of the trailing vortex .

In all cases of turbulent flow thus far experimentally investigated , the

irregular front separating the turbulent from non—turbulent fluid propagates

at a finite rate rather than diffusing to infinity. The vanishing of r
2 

u ’u~

is consistent with all known experimental facts about the trailing vortex and

the turbulent flows in general. Assuming that r2 u ’u~ is finite as r + ~~

would lead us to the same difficulty as Squire’s work (1965). Angular momentum

would escape to infinity due to turbulent stresses far in excess of that allowed

by laminar viscosity of the fluid .

It follows from (26) that the radial and associated axial convection of

angular momentum are important if the turbulent vortex grows faster than the

15
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laminar vortex and there is no overshoot or F ~ F0 
. The experiments

determine the magnitude of the relative importance of convection versus

diffusion.

The velocities u9 
and u in a turbub.nt trailing vortex behind

an airfoil have been measured by Singh (1974) and Uberoi (1974) at

4F / v  = 2.1 x 10 . Unfortunately, the convection of angular momentum cannot

• be accurately calculated from measured u . We have calculated the first

and the last terms in (25) using measured u0 and thus determ ined that

diffusion Is about a percent or so of the convection of the angular momentum .

Therefore , the dynamics of turbulent trailing vortex arc Independent of

1 / v  at least at the Reynolds number of the experiment and above, in the

literature the effect of slowly decaying and different initial conditions

in different experiments may have been confused with the effect of Reynolds

number on the structure of these vortices. The terms involving v may be

neglected in (23) through (26) (Uberoi l977b); thus

r/F y(ru /F , zu /F ) and (27)

2 2  2 _ _ _ _  2
u — u r = — r (—u u — u ‘u ‘) — — u u r (28)
o 3 z  0 3r r O  r 0 3z z O

In order to proceed further we may wri te  the equations governing u

and U and assume enough relations among the independent variables so that

their number equals the number of equations. Instead we propose an elemental

theory which incorporates the mechanism of vortex changes discussed above.

We look for a solution such that F/F Is a function of a single variable

16
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r u  2 r
• 

~~~~~~ 
0
) (_.2_)n (29)

0 0

• We assume that the total radial and assoc iated axial convection of angular

moment urn

f ~ [f— r (u
r 
u0 + u

’u~) + r u u 0 ] dr ( r )  (30)

The te rms on the r ight hand side of (28) are only significant In the core

where F — F is significantl y different from zero. The sign of these

terms should not depend on th e sign of F — F and they should have proper

dependence on r as r -
~~ 0. On these bases and in light of discussion of

the physical phenomena we propose that

2 3 2 F 2
2

r (U
r

u
0 

+ u~,u~~)+~~~~-r u u
0 

— n a (~~2~_ )m ( F  — F )  ~— exp (bn) (31)

where a and b are constants. The factor exp(bn) is in recognition

of the fact that the turbulent core at any z is of finite size and the

expressIon (31) should rap idly approach zero as we go from turbulent (‘or(’ to

the outside non—turbulent fluid .

Using (31) the governing equation (28) becomes

F 2 
2

u }- Fr = —n a ( ~~~~2 )
m 

( ~ — ~~~ ) ~~
— exp (bn) (32)

and for m = 1 — n we have

= a(l—y) exp(b~ ) (33)

17
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The solution is

y = 1 — 1/ (1 + ~ [exp(b~) — 1] ) (34)

The comparison of this expression with observations , Singh (1974), Uberoi

(1974) is shown in figure 1, where a = 150 and b = 10.

6. Final Stages in Vor tex Decay

If in (30) m > 0 then relative to diffusion the importance of convection

of angul ar mom en tum dec reases as z -
~ = . Independen t of the theory proposed

her e , let us assume that the convection is negligable compa red with the dif-

fusion and the core size continues to increase at least at the rate given by

the diffusion as z -
~ ~~~ . With increasing core size and no rad ial and associated

axial c3nvection of angular momentum , the axial velocity becomes unimportant.

We claim tha t under these conditions the flow becomes stable and no sustained

t u rbu l ence  Is possible . See section 2 above.

I n studies of laminar and turbulent line vortices self—similarity is

of ten assumed (Squire 1965, Govindraju and Saffman 1971). Consider the fol-

lowing form
2

F/ F  = y(r /ct ) = y(~ ) (35)

Integrating (10) and using (35) we have

n-i
2 —nF t c211r ~~ u0r dr = f~-y~~d~ = —2vF (36)

I t  follows tha t n = I and c v. Using (35) the expression for the rate of

change of kinetic energy of mean motion becomes

18
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JTJ —
~

- u r dr = — F /8w t (37)
0 3t 0 0

2
It may be shown that F0

/8irt is the rate of viscous dissipation of kinetic

energy of a laminar line vortex given by (7). In a line vortex with a tur-

bulent core, the rate of decrease of kinetic energy should exceed that in a

laminar line vortex with the same over—all parameters. Hence, even if a tur-

bulent line vortex exists it cannot have the form given by (35). We may say

that the virtual origins of t are different for laminar and turbulent

line vortices . However, this becomes unimportant as t -
~

7. Discussion

We have shown that all previous theories of decay of trailing vortices

are deficient or just plain wrong since they are based on untenable hypotheses.

We find the dominant physical phenomena of radial and associated axial convec-

tion of angular momentum and the role of axial velocity in sustaining turbu-

lence in the vortex core.

A theory for a turbulent trailing vortex is presented which satisfies

the requirement of turbulent theories. We propose an expression for the

dominant physical phenomena which is consistent with the basic equations and

the results agree with observations.

Reasonably complete discussion is presented because of confusion in this

field and to provide suggestions for further experimental work in turbulent

vortices. It is necessary to conduct more extensive experiments to accurately ~•

determine the values for m and n. Once we have accurate measurements of

u then we may use the following relation to independently determine m

19 
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f rom (31) we have

F F—I’ 2
• f ~~~

- u (F—F )rdr = na(~2._)
m 

~ ~ ~~
°) n exp(bn)dn (38)

• In the past there have been no guiding physical processes or theories

which could help evaluate various devices and methods for amelioration of

vortex wake problem and its influence on the operation of airplanes which may

interac t with trailing vortices of other airplanes . It is hoped that present

theory and discussion of physical phenomena will provide such guidance.

This research was in itiated during a Univ ersity of Colorado Faculty

Fellowship.
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We have used Batchelor ’s work (1964) to estimate t h e radial convection

and the associated axial convection of angular momentum . His work has been

• criticized by Tam (1973) , which in turn has been criticized by Herron (1974).

We can estimate the terms neglected in the linear theory direc tly f r om the

equations .

The linearized equation of motion for u
~ 

is

2

u i-u ~~~~~~~~~~~~~~~ + ~ ~—)u Aloaz z p az ~r3 r ~r z

In the linear theory it is further assumed that the pressure Is given b~ the

equation
2

u
~~~~~~ ~~~p 3r r A2

where 2ru 0r 
= F (l—e~~) and r~ = ur/4vz . This leads to

• I’ 2 u
= (

~~~
- )  

~~~2 (Pa) A3
8v z

where

P(~) = i; ~~~~~e )  
dn A4

For the sources given by A3 the diffusion equation Al has no self—similar or

asymptotic solution (see below). Let us assume that at •z

~~~~~~~~~~~~~~~~~~~~~ ~~~ •



F~ ~~~~‘V  ~~~~~~~~ ~~~
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u (r,z) = 0 AS

Due to the pressure gradient U will, of course , change. This is a

reasonable initial condition since the main interest is the change u due to

the prescribed pressure gradient .

The radial convection and associated axial convection of angular momentum

at a is given by (14), thus

1~ [F u (F-F ) 
]

r dr = 

[
F_r)  

~~~~i~~
rdr

= ° 2 re 
T~ (~~~~) d~

l 6irz u o
0 0

F 3
0

2 2 A61 61T z u
0 0

where we have made use of Al — AS and the value of the definite integral

is approximately 1/2. The ratio (see eq. 21)

convection/diffusion (F /v)(F /64rrz u ) A7
0 0 0 0

which agrees approximately with (21).

~~ ‘~ruer to examine the general solution of Al. we consider the change in

t in. integrote (i ve l o c i t y  which is, of course , determined by th e sources given

t,v •\ I. I t i t s  ~~~i i t t  I i~.t •\ I t i n tS  i ts  log A I :ii~d A/i for 1 arge ~ w e hav e 

~~r~: ~~~~~~~~~~~~~~~~~ ~~~~~~~ T~~~~~~~~~~~~
-
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1’ 
~

— F = (
~~~

- ) ~~L_~~ [‘rn i
F2

0

• l6ir2u z A8
0

or
F2

• — f u  r dr = ° in z/z A9
Z 20 l 6lTu z

0

where we have assumed that there is no velocity deficit at a .  The integrated

veloc ity deficit given by A9 continues to increase with z and can be made

to have any value by suitable choice of z .  A particular self—similar

solution, namely

F2

u = ~~~~~ e~~ f0P(t)e t
dt AlOa 8vz

0

was proposed by Tam (1973) and gives inf in i te  integrated axial velocity

def ic i t  as it is should in view of our discussion.

For the sources given by A3 the only properly posed problem is to prescribe

an initial u ( r , z )  and Al will determine the subsequent developmen t of u .

There is no solution which is either self—similar , or independen t of

u(r ,z )and z (depending only on the integrated u(r ,z )).
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